Proper installation shown above.
See page 2 for issues that arise if the in/out head is incorrectly connected to the untreated water inlet/treated water outlet of the control valve, rather than to the 2nd tank connection ports.
Twin Valve Installation Tips:

We have had a number of instances where customers have incorrectly installed the in/out head to the untreated water inlet/treated water outlet of the control valve, rather than to the 2nd tank connection ports.

Below are a number of situations that will occur when the in/out head is incorrectly installed to the untreated water inlet/treated water outlet of the control valve.

1) When “A” is in the draw cycle it will not draw brine and will put water into the salt tank. The “B” tank will draw properly.

2) When “B” is in the backwash cycle, “A” will have no flow to service.

3) The transfer disc seals may be forced out of their cavities on the back/motor side of the transfer discs, and it is possible that one of the seals could get pushed up into the valve and get stuck in the top of tank port of the spacer stack assembly.
Table of Contents

Valve Body Compliance Table .. 4
Drive Cap Assembly, Downflow Piston, Upflow Piston, Regenerant Piston and Spacer Stack Assembly .. 5
Twin Transfer ... 6
Injector Cap, Injector Screen, Injector, Plug and O-Ring ... 8
Injector Order Information .. 9
Injector Graphs US Units: Injector Draw, Slow Rinse and Total Flow Rates .. 10
Injector Graphs Metric Units: Injector Draw, Slow Rinse and Total Flow Rates 12
Refill Flow Control Assembly and Refill Port Plug ... 14
Drain Line – 3/4” .. 15
Drain Line – 1” .. 16
Interconnect Fitting Assembly .. 19
General Information .. 20
 General Warnings (Must appear in OEM's manual) .. 20
 Quick Reference Specifications ... 22
 Drive Assembly ... 23
 Drive Cap Assembly, Main Piston and Regenerant Piston ... 24
 Spacer Stack Assembly .. 24
 Injector Cap, Screen, Injector Plug and Injector ... 24
 Refill Flow Control Assembly or Refill Port Plug .. 24
 Drain Line Flow Control and Fitting Assembly ... 25
Service Instructions .. 26
 Servicing Transfer Cap Assemblies .. 30
 Troubleshooting ... 32
 Limited Warranty ... 36
Valve Body Compliance Table

<table>
<thead>
<tr>
<th>Application</th>
<th>Injector and/or Plug(s)</th>
<th>Main Piston</th>
<th>Regenerant Piston</th>
<th>Stack</th>
<th>Body*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” Downflow Softener or Regenerating Filter</td>
<td>Injector in “DN” hole, Plug in “UP” hole</td>
<td>V3011</td>
<td>V3174</td>
<td>V3005</td>
<td>V3031</td>
</tr>
<tr>
<td>1” Backwash Only Filter</td>
<td>Plug in “DN” and “UP” holes, Install Refill Port Plug</td>
<td>V3011</td>
<td>None</td>
<td>V3005</td>
<td>V3031</td>
</tr>
<tr>
<td>1” Upflow Softener</td>
<td>Injector in “UP” hole, Plug in unlabeled hole</td>
<td>V3011-01</td>
<td>V3174</td>
<td>V3005</td>
<td>V3031</td>
</tr>
</tbody>
</table>

WS1TT with 1.050" Distributor Tube Opening Identification

Note: The downflow piston is a solid amber color. The upflow piston is black and amber.
Drive Cap Assembly, Downflow Piston, Upflow Piston, Regenerant Piston and Spacer Stack Assembly

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3005</td>
<td>WS1 Spacer Stack Assembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>V3004</td>
<td>Drive Cap ASY</td>
<td>1</td>
</tr>
<tr>
<td>3a</td>
<td>V3011*</td>
<td>WS1 Piston Downflow ASY</td>
<td>1</td>
</tr>
<tr>
<td>3b</td>
<td>V3011-01*</td>
<td>WS1 Piston Upflow ASY</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>V3174</td>
<td>WS1 Regenerant Piston</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>V3135</td>
<td>O-ring 228</td>
<td>1</td>
</tr>
</tbody>
</table>

*V3011 is labeled with DN and V3011-01 is labeled with UP. Upflow option is not applicable to EA, EE or EI control valves.

Note: The regenerant piston is not used in backwash only applications.

Refer to programming and Cover Drawing Manual
Twin Transfer

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3470</td>
<td>SCREW BHC 1/4-20 X 1 SS</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>V3724</td>
<td>WASHER FLAT SS 1/4</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>V4005-01</td>
<td>T1 TRANSFER CAP ASY</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>V4029</td>
<td>O-RING 236</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>V4015</td>
<td>T1 TRANSFER SPRING</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>V4014</td>
<td>T1 TRANSFER SPRING SUPPORT</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>V4036</td>
<td>T1 ROTOR DISK ASY</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>V3105</td>
<td>O-RING 215 (DISTRIBUTOR TUBE)</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>V3180</td>
<td>O-RING 337</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>V4016</td>
<td>T1 TRANSFER SEAL</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>V3031</td>
<td>T1 BODY SFT WTR REGEN</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>V4023</td>
<td>T1 TRANSFER DRIVE SHAFT ASY</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>V3287</td>
<td>O-RING 110</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>V4006-01</td>
<td>T1 TRANSFER DRIVE CAP ASY</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>V4011-01</td>
<td>T1 TRANSFER DRIVE GEAR ASY</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>V4012</td>
<td>T1 TRANSFER DRIVE GEAR AXLE</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>V4013</td>
<td>T1 TRANSFER REDUCTION GEAR</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>V3264</td>
<td>WS2H BYPASS REDUCTION GEAR AXLE</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>V3110</td>
<td>WS1 DRIVE REDUCING GEAR 12X36</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>V3262-01</td>
<td>WS1.5&2ALT/2BY REDUCGEAR CVR ASY</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>V3592</td>
<td>SCREW #8-1 PHPN T-25 SS</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>V4049</td>
<td>T1 COVER ASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>NOT SHOWN</td>
<td>V4043</td>
<td>T1 TRANSFER MOTOR ASY</td>
<td>1</td>
</tr>
<tr>
<td>NOT SHOWN</td>
<td>V3151</td>
<td>WS1 NUT 1 QC</td>
<td>1</td>
</tr>
<tr>
<td>NOT SHOWN</td>
<td>V4055*</td>
<td>TWIN TANK METER ASY</td>
<td>1</td>
</tr>
<tr>
<td>NOT SHOWN</td>
<td>V4017-01</td>
<td>T1 INTERCONNECT FITTING ASY</td>
<td>1</td>
</tr>
<tr>
<td>NOT SHOWN</td>
<td>D1400</td>
<td>1191 IN/OUT HEAD</td>
<td>1</td>
</tr>
</tbody>
</table>

*THIS WATER METER SHOULD NOT BE USED AS THE PRIMARY MONITORING DEVICE FOR CRITICAL OR HEALTH EFFECT APPLICATIONS.
Injector Cap, Injector Screen, Injector, Plug and O-Ring

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3176</td>
<td>INJECTOR CAP</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>V3152</td>
<td>O-RING 135</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>V3177-01</td>
<td>INJECTOR SCREEN CAGE</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>V3010-1Z</td>
<td>WS1 INJECTOR ASY Z PLUG</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>V3010-1A</td>
<td>WS1 INJECTOR ASY A BLACK</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>V3010-1B</td>
<td>WS1 INJECTOR ASY B BROWN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1C</td>
<td>WS1 INJECTOR ASY C VIOLET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1D</td>
<td>WS1 INJECTOR ASY D RED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1E</td>
<td>WS1 INJECTOR ASY E WHITE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1F</td>
<td>WS1 INJECTOR ASY F BLUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1G</td>
<td>WS1 INJECTOR ASY G YELLOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1H</td>
<td>WS1 INJECTOR ASY H GREEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1I</td>
<td>WS1 INJECTOR ASY I ORANGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1J</td>
<td>WS1 INJECTOR ASY J LIGHT BLUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3010-1K</td>
<td>WS1 INJECTOR ASY K LIGHT GREEN</td>
<td></td>
</tr>
<tr>
<td>Not Shown</td>
<td>V3170</td>
<td>O-RING 011</td>
<td>*</td>
</tr>
<tr>
<td>Not Shown</td>
<td>V3171</td>
<td>O-RING 013</td>
<td>*</td>
</tr>
</tbody>
</table>

* The injector plug and the injector each contain one 011 (lower) and 013 (upper) o-ring.

Note: For upflow position, injector is located in the up hole and injector plug is in the other hole. Upflow option is not applicable to EA, EE or EI control valves. For a filter that only backwashes, injector plugs are located in both holes.
Actual tank size used may vary depending on the design and application of the system. Tank diameter is an **approximation** for the following:

1. **downflow** softener using standard mesh synthetic cation exchange media regenerating with sodium chloride.

2. **upflow** softener using standard mesh synthetic cation exchange media regenerating with sodium chloride, an inlet water pressure of 30 to 50 psi (2.1 to 3.4 bar) and water temperature of 60°F (15.6°C) water or warmer. Higher pressures or lower temperatures would need smaller injectors to avoid lifting the bed.

Not applicable for EA, EE or EI control valves.

Injector Order Information

<table>
<thead>
<tr>
<th>Injector Order Number</th>
<th>Injector Color</th>
<th>Down ****</th>
<th>Up*</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3010-1A</td>
<td>Black</td>
<td>6"</td>
<td>8"</td>
</tr>
<tr>
<td>V3010-1B</td>
<td>Brown</td>
<td>7"</td>
<td>9"</td>
</tr>
<tr>
<td>V3010-1C</td>
<td>Violet</td>
<td>8"</td>
<td>10"</td>
</tr>
<tr>
<td>V3010-1D</td>
<td>Red</td>
<td>9"</td>
<td>12"</td>
</tr>
<tr>
<td>V3010-1E</td>
<td>White</td>
<td>10"</td>
<td>13"</td>
</tr>
<tr>
<td>V3010-1F</td>
<td>Blue</td>
<td>12"</td>
<td>14"</td>
</tr>
<tr>
<td>V3010-1G</td>
<td>Yellow</td>
<td>13"</td>
<td>16"</td>
</tr>
<tr>
<td>V3010-1H</td>
<td>Green</td>
<td>14"</td>
<td>18"</td>
</tr>
<tr>
<td>V3010-1I</td>
<td>Orange</td>
<td>16"</td>
<td>21"</td>
</tr>
<tr>
<td>V3010-1J</td>
<td>Light Blue</td>
<td>18"</td>
<td></td>
</tr>
<tr>
<td>V3010-1K</td>
<td>Light Green</td>
<td>21"</td>
<td></td>
</tr>
</tbody>
</table>
Refill Flow Control Assembly and Refill Port Plug

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3195-01</td>
<td>WS1 Refill Port Plug Asy</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H4615</td>
<td>Elbow Locking Clip</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>JCP-P-6</td>
<td>Polytube insert 3/8”</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>JCPG-6PBLK</td>
<td>Nut 3/8”</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>H4613</td>
<td>Elbow Cap 3/8”</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>V3163</td>
<td>0-ring 019</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>V3165-01*</td>
<td>WS1 RFC Retainer Asy (0.5 gpm)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>V3182</td>
<td>WS1 RFC</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>V3330-01</td>
<td>WS1 Brine Elbow Asy w/RFC 3/8"</td>
<td>1</td>
</tr>
<tr>
<td>Not Shown</td>
<td>V3552</td>
<td>WS1 Brine Elbow Asy w/RFC 1/2"</td>
<td>Option</td>
</tr>
<tr>
<td>Not Shown</td>
<td>H4650</td>
<td>Elbow ½” with nut and insert</td>
<td>Option</td>
</tr>
</tbody>
</table>

*Assembly includes V3182 WS1 (0.5 gpm) RFC.

Proper RFC orientation directs refill water flow towards the washer face with rounded edge and text.
Drain Line – 3/4”

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H4615</td>
<td>Elbow Locking Clip</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>PKP10TS8-BULK</td>
<td>Polytube insert 5/8</td>
<td>Option</td>
</tr>
<tr>
<td>3</td>
<td>V3192</td>
<td>WS1 Nut ¾ Drain Elbow</td>
<td>Option</td>
</tr>
<tr>
<td>4*</td>
<td>V3158-01</td>
<td>WS1 Drain Elbow ¾ Male</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>V3163</td>
<td>O-ring 019</td>
<td>1</td>
</tr>
<tr>
<td>6*</td>
<td>V3159-01</td>
<td>WS1 DLFC Retainer ASY</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>V3162-007</td>
<td>WS1 DLFC 0.7 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-010</td>
<td>WS1 DLFC 1.0 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-013</td>
<td>WS1 DLFC 1.3 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-017</td>
<td>WS1 DLFC 1.7 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-022</td>
<td>WS1 DLFC 2.2 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-027</td>
<td>WS1 DLFC 2.7 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-032</td>
<td>WS1 DLFC 3.2 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-042</td>
<td>WS1 DLFC 4.2 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-053</td>
<td>WS1 DLFC 5.3 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-065</td>
<td>WS1 DLFC 6.5 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-075</td>
<td>WS1 DLFC 7.5 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-090</td>
<td>WS1 DLFC 9.0 gpm for ¾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3162-100</td>
<td>WS1 DLFC 10.0 gpm for ¾</td>
<td></td>
</tr>
</tbody>
</table>

One DLFC must be used if ¾ fitting is used

*4 and 6 can be ordered as a complete assembly - V3331 WS1 Drain Elbow and Retainer Asy

Valves are shipped without drain line flow control (DLFC) - install DLFC before using. Valves are shipped without ¾ nut for drain elbow (polytube installation only) and 5/8” polytube insert (polytube installation only).
Drain Line - 1”

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H4615</td>
<td>Elbow Locking Clip</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>V3008-02</td>
<td>WS1 Drain FTG 1 Straight</td>
<td>1</td>
</tr>
<tr>
<td>3*</td>
<td>V3166</td>
<td>WS1 Drain FTG Body</td>
<td>1</td>
</tr>
<tr>
<td>4*</td>
<td>V3167</td>
<td>WS1 Drain FTG Adapter</td>
<td>1</td>
</tr>
<tr>
<td>5*</td>
<td>V3163</td>
<td>0-ring 019</td>
<td>1</td>
</tr>
<tr>
<td>6*</td>
<td>V3150</td>
<td>WS1 Split Ring</td>
<td>1</td>
</tr>
<tr>
<td>7*</td>
<td>V3151</td>
<td>WS1 Nut 1” QC</td>
<td>1</td>
</tr>
<tr>
<td>8*</td>
<td>V3105</td>
<td>O-ring 215</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>V3190-090</td>
<td>WS1 DLFC 9.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-100</td>
<td>WS1 DLFC 10.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-110</td>
<td>WS1 DLFC 11.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-130</td>
<td>WS1 DLFC 13.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-150</td>
<td>WS1 DLFC 15.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-170</td>
<td>WS1 DLFC 17.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-200</td>
<td>WS1 DLFC 20.0 gpm for 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3190-250</td>
<td>WS1 DLFC 25.0 gpm for 1</td>
<td></td>
</tr>
</tbody>
</table>

* Can be ordered as a set. Order number V3008-02, description: WS1 Drain FTG 1 Straight.

Proper DLFC orientation directs water flow towards the washer face with rounded edge.
V4017-01 TT Interconnect Fitting Assembly up to 10” tanks

![Diagram of V4017-01 TT Interconnect Fitting Assembly up to 10” tanks]

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3151</td>
<td>WS1 NUT 1” QUICK CONNECT</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>V3150</td>
<td>WS1 SPLIT RING</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>V3105</td>
<td>O-RING 215</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>V4017</td>
<td>T1 INTERCONNECT FITTING</td>
<td>2</td>
</tr>
</tbody>
</table>

Fitting Installation Instructions:
- Installation fittings are designed to accommodate minor plumbing misalignments, but are not designed to support the weight of a system or the plumbing.
- Slide nut on first, then the split ring and o-ring.
- Hand tighten the nut only.

The V4017-01 twin tank control valve interconnect kit can be used on tanks up to 10” in diameter and is packed in with control valve. **If using 12” diameter tanks or larger order optional kit number V4052-01 twin tank control valve interconnect kit for 12” thru 21” diameter tanks.**

V4052-01 TT Interconnect Fitting Assembly for 12” to 21” Tanks

![Diagram of V4052-01 TT Interconnect Fitting Assembly for 12” to 21” Tanks]

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3151</td>
<td>WS1 NUT 1” QUICK CONNECT</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>V3150</td>
<td>WS1 SPLIT RING</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>V3105</td>
<td>O-RING 215</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>V3352</td>
<td>WS1 FITTING 1¼”&1½” PVC SOLVENT</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>V4052</td>
<td>PIPE PVC SCH 80 1¼” X 2”</td>
<td>2</td>
</tr>
</tbody>
</table>

D1400 1191 In/Out Head

![Diagram of D1400 1191 In/Out Head]

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Order No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3180</td>
<td>O-RING 337</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>V3105</td>
<td>O-RING 215 (DISTRIBUTOR TUBE)</td>
<td>1</td>
</tr>
</tbody>
</table>
Introduction

This manual is about a control valve to be used on water softeners or water filters. The manual is designed to aid water treatment equipment manufacturers in the selection of the various control valve options. Information in this manual is different than what is needed for installation and servicing of a particular water treatment system. This manual is not intended to be used as a manual for a complete water softener or filter.

General Warnings

The control valve, fittings and/or bypass are designed to accommodate minor plumbing misalignments but are not designed to support the weight of a system or the plumbing.

HYDROCARBONS SUCH AS KEROSENE, BENZENE, GASOLINE, ETC., MAY DAMAGE PRODUCTS THAT CONTAIN O-RINGS OR PLASTIC COMPONENTS. EXPOSURE TO SUCH HYDROCARBONS MAY CAUSE THE PRODUCTS TO LEAK. DO NOT USE THE PRODUCT(S) CONTAINED IN THIS DOCUMENT ON WATER SUPPLIES THAT CONTAIN HYDROCARBONS SUCH AS KEROSENE, BENZENE, GASOLINE, ETC.

THIS WATER METER SHOULD NOT BE USED AS THE PRIMARY MONITORING DEVICE FOR CRITICAL OR HEALTH EFFECT APPLICATIONS

Do not use Vaseline, oils, other hydrocarbon lubricants or spray silicone anywhere. A silicone lubricant may be used on black o-rings but is not necessary.

The nuts and caps are designed to be unscrewed or tightened by hand or with the special plastic wrench. If necessary a pliers can be used to unscrew the nut or cap. Do not use a pipe wrench to tighten or loosen nuts or caps. Do not place a screwdriver in the slots on caps and/or tap with a hammer.

Do not use pipe dope or other sealants on threads. Use Teflon tape on the threaded inlet, outlet and drain fittings. Teflon tape is not necessary on the nut connection or caps because of o-ring seals.

After completing any valve maintenance involving the drive assembly or the drive cap assembly and pistons unplug power source jack from the printed circuit board (black wire) and plug back in or press and hold NEXT and REGEN buttons for 3 seconds. This resets the electronics and establishes the service piston position. The display should flash all wording, then flash the software version and then reset the valve to the service position.

All plumbing should be done in accordance with local plumbing codes. The pipe size for the drain line should be a minimum of ½”. Backwash flow rates in excess of 7 gpm (26.5 lpm) or length in excess of 20’ (6.1m) require ¾” drain line.

Solder joints near the drain must be done prior to connecting the drain line flow control fitting. Leave at least 6” between the drain line control fitting and solder joints when soldering pipes that are connected on the drain line control fitting. Failure to do this could cause interior damage to the drain line flow control fitting.

When assembling the installation fitting package (inlet and outlet), connect the fitting to the plumbing system first and then attach the nut, split ring and o-ring. Heat from soldering or solvent cements may damage the nut, split ring or o-ring. Solder joints should be cool and solvent cements should be set before installing the nut, split ring and o-ring. Avoid getting primer and solvent cement on any part of the o-rings, split rings, bypass valve or control valve.

Plug into an electrical outlet. Note: All electrical connections must be connected according to local codes. (Be certain the outlet is uninterrupted.)

Install grounding strap on metal pipes.
This glass filled Noryl\(^1\) (or equivalent) fully automatic control valve is designed as the primary control center to direct and regulate all cycles of a water softener or filter.

The control valve is compatible with a variety of regenerants and resin cleaners. The control valve is capable of routing the flow of water in the necessary paths to regenerate or backwash water treatment systems. The injector regulates the flow of brine or other regenerants. The control valve regulates the flow rates for backwashing, rinsing, and the replenishing of treated water into a regenerant tank, when applicable.

Control valve installation is made easy because the distributor tube can be cut \(\frac{1}{2}\)” above to \(\frac{1}{4}\)” below the top of tank thread. The distributor tube is held in place by an o-ring seal and the control valve also has a bayonet lock feature for upper distributor baskets.

The power adapter comes with a 15 foot power cord and is designed for use with the control valve. The power adapter is for dry location use only. The control valve remembers all settings until the battery power is depleted if the power goes out. After the battery power is depleted, the only item that needs to be reset is the time of day; other values are permanently stored in the nonvolatile memory. The control valve battery is not rechargeable but is replaceable.

No user serviceable parts are on the PC board, the motor or the power adapter. The means of disconnection from the main power supply is by unplugging the power adapter from the wall.

\(^1\)Noryl is a trademark of Sabic.
Quick Reference Specifications

<table>
<thead>
<tr>
<th>Service flow rate 1"</th>
<th>28 gpm (106 lpm, 6.36 m³/h) @15 psig (103 kPa) drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backwash flow rate 1"</td>
<td>15 gpm (57 lpm, 3.4 m³/h) @25 psig (172 kPa) drop</td>
</tr>
<tr>
<td>Minimum/Maximum Operating Pressures</td>
<td>20 psi (138 kPa or 1.4 bar) -125 psi (862 kPa or 8.6 bar)</td>
</tr>
<tr>
<td>Minimum/Maximum Operating Temperatures</td>
<td>40°F (4°C) - 110°F (43°C)</td>
</tr>
<tr>
<td>Power Adapter: Supply Voltage</td>
<td>See Programming and Cover Drawing Manual page 4</td>
</tr>
<tr>
<td>Supply Frequency</td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td></td>
</tr>
<tr>
<td>Regenerant Refill Rate</td>
<td>0.5 gpm (1.9 lpm)</td>
</tr>
<tr>
<td>Injectors</td>
<td>See pages 9-13</td>
</tr>
<tr>
<td>Drain Line Flow Controls</td>
<td>See pages 15-16</td>
</tr>
<tr>
<td>Distributor Tube Opening WS1TT Valve</td>
<td>1.05” outside diameter (¼” NPS)</td>
</tr>
<tr>
<td>Tank Thread</td>
<td>2½” - 8 NPSM</td>
</tr>
<tr>
<td>Control Valve Weight</td>
<td>16 lbs. 7.25 kg</td>
</tr>
<tr>
<td>PC Board Memory</td>
<td>Nonvolatile EEPROM</td>
</tr>
<tr>
<td></td>
<td>(electrically erasable programmable read only memory)</td>
</tr>
<tr>
<td>Compatible with regenerants/chemicals</td>
<td>Sodium chloride, potassium chloride, potassium permanganate, sodium bisulfite, chlorine and chloramines</td>
</tr>
</tbody>
</table>

Allow one foot of clearance to service the valve.

The valve will withstand transportation and storage temperatures of -13 °F (-25 °C) to 131 °F (55 °C) and for short periods up to 158 °F (70 °C). If valve has been exposed to freezing conditions let valve warm up to room temperature before running water through it. The valve has been packaged to prevent damage from the effects of normal humidity, vibration and shock.
The WS1TT drawings consist of the following components:

1. Drive Assembly
2. Drive Cap Assembly, Main Piston and Regenerant Piston
3. Spacer Stack Assembly
4. Injector Cap, Screen, Injector Plug and Injector
5. Refill Flow Control Assembly or Refill Port Plug
6. Drain Line Flow Control and Fitting Assembly
7. Water Meter
8. Twin Transfer Valve

Drive Assembly

The drive assembly consists of the following parts:

- Drive Bracket
- Printed Circuit (PC) Board
- Motor
- Drive Gears
- Drive Gear Cover

The drive bracket holds the PC board, the motor, the drive gears and the drive gear cover in place.

The PC board receives and retains information, displays the information, determines when to regenerate and initiates regeneration. The display shows different types of information in the initial system set up (for softeners or filters), installer display settings, diagnostics, valve history or user display settings.

The PC board powers the motor. The PC board’s two-prong jack connects wires to the direct current (DC) motor. The motor is held in place on the drive bracket by a spring-loaded clip and a small bulge in the plastic, which fits in one of the slots on the motor housing. The motor turns drive gears that drive the piston to cycle positions for backwashing, regeneration, rinsing, refill or service. The motor is fully reversible (turns both ways) and changes direction of rotation to change the direction of piston motion. The motor is easily replaced if necessary.

There are three drive gears held in place by the drive gear cover. All three drive gears are the same size. A reflective coating is applied to the gears. As the center drive gear turns a light shines on the coating and a light sensing diode determines if a light pulse was returned. The PC board counts the pulses and determines when to stop driving the motor.

Drive Cap Assembly, Main Piston and Regenerant Piston

The drive gears turn the main gear of the drive cap assembly, which moves the piston. The screw-driven, horizontally moving piston stops at specific positions to direct the flow of water to backwash, regenerate, rinse or refill. The PC board determines the position of the piston by counting pulses produced when the piston is moved. An optical sensor looking at one of the reduction drive gears generates these pulses. Each cycle position is defined by a number of pulses. The counter is zeroed each time the valve goes to the service position. The PC board finds the service position by noting the increase in current delivered to the motor when the mechanical stop at the service position is reached. This method of controlling piston position allows for greater flexibility and requires no switches or cams (U.S. Patent 6444127).

One of two main pistons is always used:

1. A 1.25" diameter downflow piston is used when the WS1TT control valve is used as a downflow softener, regenerating filter or non-regenerating filter.
2. A 1.25" diameter upflow piston is used when the WS1TT control valve is used as an upflow softener. Upflow option not applicable for EA, EE or EI control valves.

If the control valve is used as a softener or a regenerating filter, a regenerant piston must be attached to the main piston. If the control valve is to be used on a system that does not require a regenerant to be added, the regenerant piston must be removed.
Spacer Stack Assembly

The spacer stack assembly provides the necessary flow passage for water during the different cycles. The all-plastic spacer stack assembly (U.S. Patent 6402944) is a one-piece design which allows the stack to be removed using your fingers.

The exterior of the stack is sealed against the body bore with self lubricating EPDM o-rings, while the interior surface is sealed against the piston using slippery self cleaning directional (one-way) silicone lip seals. The lip seals are clear in color and have a special slippery coating so that the piston does not need to be lubricated.

Injector Cap, Screen, Injector Plug and Injector

The screen, injector and/or injector plug(s) are installed under the injector cap in an easy to access location on top of the valve. The injector cap contains four slots so no water accumulates in the cap. The injector cap is designed to be hand tightened.

Under the injector cap there is an easy to clean removable screen to prevent fouling of the injector. There are two holes under the injector cap labeled “DN” and “UP”. The holes will be filled with a plug or an injector.

The plug (Order # V3010-1Z) prevents water from traveling a certain pathway. The injector lets water pass through the pathway. The self-priming injector increases the velocity of the water, creating a zone of negative pressure that draws in the concentrated liquid regenerant, such as sodium chloride (brine), potassium permanganate, etc. The regenerant blends with the stream of water, which passes through the media to regenerate the bed.

The injector provides a consistent regenerant/water mixture ratio over the entire operating pressure range of the control valve. The injector provides good performance in a variety of applications, which may involve elevated drain lines and long regenerant draw lengths. Injectors are chosen by knowing the type, amount, and regenerant flow rate for a particular type of media. Guidelines can be found in the media manufacturer’s literature. The color coded injectors give different regenerant draw, slow rinse and total flow rates over the pressure range. See injector graphs (pages 10-13) for total, slow rinse and draw flow rates.

The control valve has been manufactured to be one of the following:

• regeneration downflow WS1TT (for softeners or regenerating filters install injector in DN location, plug in UP location)
• regeneration upflow WS1TT (upflow option is for softeners only, which are not EA, EE or EI control valves. Install injector in UP location, plug in other hole location)
• no regenerant WS1TT (both the DN and UP holes have injector plugs installed) and plug installed for the refill elbow

NOTE: It is okay to field convert valves from upflow to downflow and vice versa with the WS1TT valve as long as software supports upflow brine.

Refill Flow Control Assembly or Refill Port Plug

The refill flow control assembly consists of a refill flow elbow, refill flow control retainer assembly, refill flow control, polytube insert and nut assembly. The refill flow control retainer fits in the refill elbow. The refill flow control retainer houses the refill flow control which controls the flow rate when the regenerant tank is being refilled. The refill flow control is a flexible washer-like part with a small orifice and a precision molded contour that delivers a steady 0.5 gpm regenerant tank refill rate at varying inlet pressures. Refill is accomplished with treated water.

The refill flow control assembly is installed in an easy to access refill elbow located on top of the control valve. The refill flow control assembly is attached to the control valve with a locking clip. The locking clip allows the elbow to rotate 270 degrees so the outlet can be orientated towards the regenerant tank.

The control valve has a standard refill elbow to which a 3/8" flexible tube can be connected. An optional elbow can be ordered which accommodates a ½" flexible tube for a high regenerant draw rate situation (G injectors and larger). Both elbows use the same refill flow control and retainer.

If the control valve is to be used as a non-regenerant filter control valve, the refill elbow is removed and replaced with a refill port plug P/N V3195-01.
Drain Line Flow Control and Fitting Assembly

The drain line flow control assembly includes a drain line flow control and a fitting. The drain line flow control allows proper media bed expansion by regulating the flow rate to the drain. The drain line flow control is a flexible washer-like part with an orifice and a precision molded contour. The flow rates are within ±10% over the pressure range of 20 psi to 125 psi (1.4 bar to 8.6 bar). See the table for flow rate information.

Drain Line Flow Control and Fitting Assembly Information

<table>
<thead>
<tr>
<th>Drain Line Fitting</th>
<th>Drain Line Flow Control Order No.</th>
<th>Number on Drain Line Flow Control</th>
<th>Backwash Flow Rate (gpm)</th>
<th>Backwash Flow Rate (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾”</td>
<td>V3162-007</td>
<td>007</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-010</td>
<td>010</td>
<td>1.0</td>
<td>3.8</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-013</td>
<td>013</td>
<td>1.3</td>
<td>4.9</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-017</td>
<td>017</td>
<td>1.7</td>
<td>6.4</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-022</td>
<td>022</td>
<td>2.2</td>
<td>8.3</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-027</td>
<td>027</td>
<td>2.7</td>
<td>10.2</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-032</td>
<td>032</td>
<td>3.2</td>
<td>12.1</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-042</td>
<td>042</td>
<td>4.2</td>
<td>15.9</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-053</td>
<td>053</td>
<td>5.3</td>
<td>20.1</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-065</td>
<td>065</td>
<td>6.5</td>
<td>24.6</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-075</td>
<td>075</td>
<td>7.5</td>
<td>28.4</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-090</td>
<td>090</td>
<td>9.0</td>
<td>34.1</td>
</tr>
<tr>
<td>¾”</td>
<td>V3162-100</td>
<td>100</td>
<td>10.0</td>
<td>37.9</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-090</td>
<td>090</td>
<td>9.0</td>
<td>34.1</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-100</td>
<td>100</td>
<td>10.0</td>
<td>37.9</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-110</td>
<td>110</td>
<td>11</td>
<td>41.6</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-130</td>
<td>130</td>
<td>13</td>
<td>49.2</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-150</td>
<td>150</td>
<td>15</td>
<td>56.8</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-170</td>
<td>170</td>
<td>17</td>
<td>64.3</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-200</td>
<td>200</td>
<td>20</td>
<td>75.7</td>
</tr>
<tr>
<td>1”</td>
<td>V3190-250</td>
<td>250</td>
<td>25</td>
<td>94.6</td>
</tr>
</tbody>
</table>

The drain line flow control and fitting are located on top of the control valve and replaceable without the use of special tools.

The drain line flow control can be installed in the standard ¾” drain line elbow, which accommodates 5/8” polytube or ¾” NPT drain line connections. The optional nut and polytube insert for the ¾” drain line elbow is designed for use with flexible polytube only. The ¾” drain line elbow can be rotated 180 degrees so the outlet can be orientated to the nearest drain. The same retainer is used for all drain line flow controls for the ¾” fitting. Drain line flow controls designed for the 3/4” fitting are available for flow rates ranging from 0.7 to 10 gpm (2.6 to 37.9 lpm).

An optional 1” straight drain line fitting is available to accommodate drain line flow rates ranging from 9 to 25 gpm (34.1 to 94.6 lpm). This fitting is straight but still connects to the control valve using the same locking clip. The drain line flow control is located between two fitted parts (i.e. the fitting acts as the retainer). The nut is unscrewed to access the drain line flow control.
Service Instructions

Drive Assembly

Remove the valve cover to access the drive assembly.

Disconnect the power source plug (black wire) from the PC board prior to disconnecting the motor or water meter plugs from the PC board. The power source plug connects to the four-pin jack. The motor plug connects to the two-pin jack on the left-hand side of the PC board. The water meter plug (gray wire) connects to the three-pin jack on the far right-hand side of the PC board.

The PC board can be removed separately from the drive bracket but it is not recommended. Do not attempt to remove the display panel from the PC board. To remove the PC board from the drive bracket, unplug the power, water meter and motor plugs from the PC board. Lift the middle latch along the top of the drive bracket while pulling outward on the top of the PC board. The drive bracket has two plastic pins that fit into the holes on the lower edge of the PC board. Once the PC board is tilted about 45° from the drive bracket it can be lifted off of these pins. To reinstall the PC board, position the lower edge of the PC board so that the holes in the PC board line up with the plastic pins. Push the top of the PC board towards the valve until it snaps under the middle latch, weave the power and water meter wires into the holders and reconnect the motor, water meter and power plugs.

The drive bracket must be removed to access the drive cap assembly and pistons or the drive gear cover. It is not necessary to remove the PC board from the drive bracket to remove the drive bracket. To remove the drive bracket start by removing the plugs for the power source and the water meter. Unweave the wires from the side holders. Two tabs on the top of the drive back plate hold the drive bracket in place. Simultaneously lift the two tabs and gently ease the top of the drive bracket forward. The lower edge of the drive bracket has two notches that rest on the drive back plate. Lift up and outward on the drive bracket to disengage the notches.

To reassemble, seat the bottom of the drive bracket so the notches are engaged at the bottom of the drive back plate. Push the top of the drive bracket toward the two latches. The drive bracket may have to be lifted slightly to let the threaded piston rod pass through the hole in the drive bracket. Maintain a slight engaging force on top of the drive bracket while deflecting the bracket slightly to the left by pressing on the side of the upper right corner. This helps the drive gears mesh with the drive cap assembly. The drive bracket is properly seated when it snaps under the latches on the drive back plate. If resistance is felt before latching, then notches are not fully engaged, the piston rod is not in hole, the wires are jammed between the drive bracket and drive back plate, or the gear is not engaging the drive cap assembly.

To inspect the drive gears, the drive gear cover needs to be removed. Before trying to remove the gear cover, the drive bracket must be removed from the drive back plate. (Refer to the instructions above regarding removing the drive bracket from the drive back plate. The drive gear cover can be removed from the drive bracket without removing the motor or the PC board.) The drive gear cover is held in place on the drive bracket by three clips. The largest of the three clips is always orientated to the bottom of the drive bracket. With the PC board facing up, push in and down on the large clip on the drive gear cover. Handle the cover and the gears carefully so that the gears do not fall off the pegs in the cover.

Replace broken or damaged drive gears. Do not lubricate any of the gears. Avoid getting any foreign matter on the reflective coating because dirt or oils may interfere with pulse counting.

The drive gear cover only fits one way, with the large clip orientated towards the bottom. If all three clips are outside of the gear shroud on the drive bracket the drive gear cover slips easily into place.

The drive bracket does not need to be removed from the drive plate if the motor needs to be removed. To remove the motor, disconnect the power and motor plugs from the jacks on the PC board. Move the spring clip loop to the right and hold. Rotate the motor at least a ¼ turn in either direction so the wires are vertical (up & down) before gently pulling on the wire connectors to remove the motor. Pulling directly on the wires without rotating the motor may break the wires off the motor.
Replace the motor if necessary. Do not lubricate the motor or the gears. To reinstall the motor, move the spring clip loop to the right and hold. Gently turn the motor while inserting so that the gear on the motor meshes with the gears under the drive gear cover. Release the spring clip loop and continue to rotate the motor until the wires are horizontal and the motor housing engages the small plastic bulge inside the drive bracket motor retainer. Reconnect the motor plug to the two-pronged jack on the lower left side of the PC board. If the motor will not easily engage with the drive gears when reinstalling, lift and slightly rotate the motor before reinserting. Reconnect the power plug.

Replace the valve cover. After completing any valve maintenance involving the drive assembly or the drive cap assembly and pistons unplug power source jack from the printed circuit board (black wire) and plug back in or press and hold NEXT and REGEN buttons for 3 seconds. This resets the electronics and establishes the service piston position. The display should flash all wording, then flash the software version and then reset the valve to the service position.

Drive Cap Assembly, Main Piston and Regenerant Piston

The drive assembly must be removed to access the drive cap assembly. The drive cap assembly must be removed to access the piston(s). The drive cap assembly is threaded into the control valve body and seals with an o-ring. To remove the drive cap assembly use the special plastic wrench or insert a ¼" to ½" flat blade screwdriver into one of the slots around the top 2" of the drive cap assembly so it engages the notches molded into the drive back plate around the top 2" of the piston cavity. The notches are visible through the holes. Lever the screwdriver so the drive cap assembly turns counter clockwise. Once loosened unscrew the drive cap assembly by hand and pull straight out.

The drive cap assembly contains the drive cap, the main drive gear, drive cap spline, piston rod and various other parts that should not be dissembled in the field. The only replaceable part on the drive cap assembly is the o-ring. Attached to the drive cap assembly is the main piston (downflow or upflow) and if a regenerant is used, a regenerant piston. Upflow is not applicable to EA, EE or EI control valves.
The regenerant piston (the small diameter one behind the main piston) is removed from the main piston by pressing sideways and unsnapping it from its latch. Chemically clean in dilute sodium bisulfite or vinegar, or replace the regenerant piston if needed. To remove the main piston fully extend the piston rod and then unsnap the main piston from its latch by pressing on the side with the number. Chemically clean in dilute sodium bisulfite or vinegar, or replace the main piston.

Reattach the main piston to the drive cap assembly. Reattach the regenerant piston (if needed) to the main piston. Reinsert the drive cap assembly and piston into the spacer stack assembly and hand tighten the drive cap assembly. Continue to tighten the drive cap assembly using a screwdriver as a ratchet until the black o-ring on the spacer stack assembly is no longer visible through the drain port. Excessive force can break the notches molded into the drive back plate. Make certain that the main drive gear still turns freely. The exact position of the piston is not important as long as the main drive gear turns freely.

Reattach the drive assembly to the control valve and connect all plugs. After completing any valve maintenance involving the drive assembly or the drive cap assembly and pistons unplug power source jack from the printed circuit board (black wire) and plug back in or press and hold NEXT and REGEN buttons for 3 seconds. This resets the electronics and establishes the service piston position. The display should flash all wording, then flash the software version and then reset the valve to the service position.

Spacer Stack Assembly

To access the spacer stack assembly remove the drive assembly, drive cap assembly and piston. The spacer stack assembly can be removed easily without tools by using thumb and forefinger. Inspect the black o-rings and clear lip seals for wear or damage. Replace the entire stack if necessary. Do not disassemble the stack.

The spacer stack assembly may be chemically cleaned (dilute sodium bisulfite or vinegar) or wiped with a soft cloth.

The spacer stack assembly can be pushed in to the control valve body bore by hand. Since the spacer stack assembly can be compressed it is easier to use a blunt object (5/8” to 1-1/8” in diameter) to push the center of the assembly into the control valve body. The assembly is properly seated when at least four threads are exposed (approximately 5/8”). Do not force the spacer stack assembly in. The control valve body bore interior can be lubricated with silicone to allow for easy insertion of the entire stack.

Reattach the drive cap assembly and piston(s) and the drive assembly.

After completing any valve maintenance involving the drive assembly or the drive cap assembly and pistons unplug power source jack from the printed circuit board (black wire) and plug back in or press and hold NEXT and REGEN buttons for 3 seconds. This resets the electronics and establishes the service piston position. The display should flash all wording, then flash the software version and then reset the valve to the service position.

Injector Cap, Screen, Injector Plug and Injector

Unscrew the injector cap and lift off. Loosen cap with special plastic wrench or pliers if necessary. Attached to the injector cap is a screen. Remove the screen and clean if fouled. The plug and/or injector can be pried out with a small screwdriver. The plug can be wiped clean. If the plug leaks replace the entire plug. The injector consists of a throat and a nozzle. Chemically clean the injector with vinegar or sodium bisulfite. The holes can be blown out with air. Both pieces have small diameter holes that control the flow rates of water to insure that the proper concentration of regenerant is used. Sharp objects, which can score the plastic, should not be used to clean the injector. Scoring the injector or increasing the diameter of the hole could change the operating parameters of the injector.

Two holes are labeled DN and UP. Check for compliance. Refer to Valve Body Compliance Table at the beginning of this manual.

Push the plug(s) and/or injectors firmly in place, replace the screen and hand tighten the injector cap.

Refill Flow Control Assembly or Refill Port Plug

To clean or replace the refill flow control, pull out the elbow-locking clip and then pull straight up on the elbow. Replace the elbow locking clip in the slot so that it is not misplaced. Twist to remove the white flow control retainer. The flow control can be removed by prying upward through the side slots of the retainer with a small flat blade screwdriver.
Chemically clean the flow control or the white flow control retainer using dilute sodium bisulfite or vinegar. Do not use a wire brush. If necessary, replace the flow control, o-ring on the flow control retainer, or the o-ring on the elbow.

Reseat the flow control so the rounded end is visible in the flow control. Reseat the white flow control retainer by pushing the retainer into the elbow until the o-ring seats. Remove locking clip, push down on elbow to reseat and insert locking clip.

Do not use Vaseline, oils, or other unacceptable lubricants on o-rings. A silicone lubricant may be used on the o-ring on the elbow or the white retainer.

Water Meter

The water meter assembly is connected to the PC board by a wire. If the entire water meter assembly is to be replaced, remove the control valve cover and disconnect the power source and water meter plugs from the PC board. Unlatch the drive assembly and lean it forward. Unthread the water meter wire from the side of the drive assembly and through the drive back plate. To reinstall, rethread the water meter wire through the drive back plate and the side of the drive assembly. Reattach the drive assembly and the water meter and power plugs.

THIS WATER METER SHOULD NOT BE USED AS THE PRIMARY MONITORING DEVICE FOR CRITICAL OR HEALTH EFFECT APPLICATIONS.

OPERATING PRESSURES: 20 PSI MINIMUM / 125 PSI MAXIMUM • OPERATING TEMPERATURES: 40°F MINIMUM / 110°F MAXIMUM

If no water meter wire is visible, then a plug is installed, not a water meter.

The water meter wire does not need to be removed from the PC board if the water meter is only being inspected and cleaned. To remove the water meter assembly, unscrew the meter cap on the left side of the control valve. Pliers may be used to unscrew the nut if necessary.

With the nut removed, a slot at the top of the water meter is visible. Twist a flat blade screwdriver in the slot between the control valve body and the meter. When the meter is part way out it is easy to remove the water meter from the housing. Once the water meter is removed from the control valve body, gently pull forward on the turbine to remove it from the shaft.

Do not use a wire brush to clean the turbine. Wipe with a clean cloth or chemically clean in dilute sodium bisulfite or vinegar. The turbine can be immersed in the chemical. Do not immerse electronics. If the turbine is scored or damaged or the bearings on the turbine are worn, replace the turbine.

Do not lubricate the turbine shaft. The turbine shaft bearings are prelubricated. Do not use Vaseline, oils, or other unacceptable lubricants on the o-ring. A silicone lubricant may be used on the black o-ring.

Reinsert the water meter into the side slot. Hand tighten the nut. Do not use a pipe wrench to tighten nut.
Servicing Transfer Cap Assemblies

The control valves backplate must be removed first to allow access to removing the transfer cap assembly. NOTE: Hold slight downward pressure on the top left corner of the backplate while using a thin flat screwdriver or knife blade to push in on the locking tabs, this will release the backplate and it will twist to the left off of the valve body. For removal of the drive motor side you will need to remove the drive cover assembly to access the motorized drive. The drive motor can be removed by pressing the spring clip loop to the right then rotate the motor a $\frac{1}{4}$ turn and pull outward to remove the motor from the reducing gear cover assembly. Remove the three Phillips head stainless steel screws that retain the reducing gear cover to the drive cap. Once the cover is removed you have access to the reducing drive gears simply slide them off of the gear axles with your fingers to inspect / check them there are 3 small black gears with foil decals and 1 larger black reducing gear. Remove the large white drive gear from the stainless steel drive shaft. To remove the large white transfer drive gear firmly grab the outside edge of the gear with your fingers and pull it outward away from the control valve assembly. Now you can use a 5/32” or 4mm allen wrench to remove the $\frac{1}{4}$-20 screws that retain the transfer drive cap assemblies on both sides of the valve.

NOTE: Once the screws are removed from retaining the inlet side transfer valve cap and the outlet drive motor transfer cap from the control valve the cap will spring out away from the valve body. At this point the transfer discs may be removed by pulling the discs outward off of the shaft away from the valve body with your hand. With the disc out you can inspect the flat surface area to be sure it’s clean and smooth free of any debris or scratches. Note that the disc is keyed to the drive shaft so that it will only assemble in one orientation. The transfer discs may be chemically cleaned with a dilute sodium bisulfate solution, vinegar or just wiped with a soft clean cloth.

To remove seals gently pull out on the outer lip of the seal to lift the seal out from its cavity being careful not to damage the face surface of the seal. To reassemble re-seat seals into the seal cavity of the control valve body being sure that the lip of the seal is facing outward. With seals in place put a thin film of Dow #7 on the tops of the seals and the flat surface of the discs. Prior to reinstalling the discs the drive shaft should be removed and the O-rings cleaned, inspected and lubricated with Dow #7. The shaft can then be installed into the disc prior to installation. With the outlet disc assembled to the shaft the orientation of the shaft to inlet disc can be assured by installing the set with the through hole on the outlet disc at the 6 o’clock position.

The easiest thing would be to remove both disc drives and assemble the outlet side first. Then each disc could be fitted on the shaft individually. At this point the transfer valve cap assemblies can be reinstalled.
Note: That both transfer caps only mount in one orientation. Prior to installation of cap assembly be sure to check that the stainless steel spring and the plastic spring support is in place attached to the inside of the cap assembly. Next you can wipe the outside edge of the O-ring on the cap and the inside mating area of the valve with a clean cloth & re-apply a thin layer of silicone lubricant like Dow #7.

BE SURE NOT TO USE ANYTHING HYDROCARBON BASED SUCH AS VASELINE OR PETROLEUM JELLY TO LUBRICATE PLASTIC COMPONENTS OR O-RINGS AS THEY WILL BE DAMAGED BY THE HYDROCABONS AND POTENTIALLY CAUSE FAILURES THAT CAN RESULT WITH LEAKS.

Noting the one possible orientation of the transfer drive cap, use one hand to press in and support the transfer drive cap while using the opposing hand to start two screws in, one on the top and one opposing it on the bottom. Tighten the screws in evenly so the cap seats the O-ring without getting pinched or damaged. Screws should only be hand tightened with a 5/32” or 4mm allen wrench, **DO NOT OVER TIGHTEN SCREWS.**

NOTE: be careful and make sure the meter cable doesn’t get under the drive cap while tightening as it will result in damaging the cable.

Position the large white drive gear with the “A” pointing toward the 1 o’clock position and then press it onto the stainless steel drive shaft, make sure it snaps & locks into position. **NOTE:** The white drive gear is splined to the drive shaft and will only assemble in one orientation. Because of this it is not necessary that the discs and gear be exactly positioned, the positioning needs to be approximate but they have to fit on the shaft.

Next install the larger black reducing gear onto the stainless steel shaft, then install the remaining smaller reducing gears from left to right. Re-install the grey reducing gear cover over the gears and affix with the 3 stainless steel screws. Now you can re-install the drive motor by pressing the spring clip loop to the right then rotate the motor as you are inserting it so the gear of the motor meshes properly with the reducing gears. Release the spring clip loop and rotate the motor untill the motor housing engages with the plastic nub inside the housing that holds the motor in place and make sure that the top of the motor is flush with the top of the grey gear housing. Press the drive motor wires down into the strain relief of the drive cap, now you can re-install the cover assembly.

After completing any valve maintenance involving the valve drive assembly or the transfer drive assembly please press and hold the NEXT & the REGEN buttons simultaneously for 3 to 5 seconds to perform a soft reset which will synchronize the control valves positions.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No Display on PC Board</td>
<td>a. No power at electric outlet</td>
<td>a. Repair outlet or use working outlet</td>
</tr>
<tr>
<td></td>
<td>b. Control valve Power Adapter not plugged into outlet or power cord end not connected to PC board connection</td>
<td>b. Plug Power Adapter into outlet or connect power cord end to PC Board connection</td>
</tr>
<tr>
<td></td>
<td>c. Improper power supply</td>
<td>c. Verify proper voltage is being delivered to PC Board</td>
</tr>
<tr>
<td></td>
<td>d. Defective Power Adapter</td>
<td>d. Replace Power Adapter</td>
</tr>
<tr>
<td></td>
<td>e. Defective PC Board</td>
<td>e. Replace PC Board</td>
</tr>
<tr>
<td>2. PC Board does not display correct time of day</td>
<td>a. Power Adapter plugged into electric outlet controlled by light switch</td>
<td>Use uninterrupted outlet</td>
</tr>
<tr>
<td></td>
<td>b. Tripped breaker switch and/or tripped GFI</td>
<td>c. Reset time of day. If PC Board has battery backup present the battery may be depleted. See Front Cover and Drive Assembly drawing for instructions.</td>
</tr>
<tr>
<td></td>
<td>c. Power outage</td>
<td>c. Verify proper voltage is being delivered to PC Board</td>
</tr>
<tr>
<td></td>
<td>d. Defective PC Board</td>
<td>d. Replace PC Board</td>
</tr>
<tr>
<td>3. Display does not indicate that water is flowing. Refer to user instructions for how the display indicates water is flowing</td>
<td>a. Meter is not connected to meter connection on PC Board</td>
<td>a. Connect meter to three pin connection labeled METER on PC Board</td>
</tr>
<tr>
<td></td>
<td>b. Restricted/ stalled meter turbine</td>
<td>c. Remove meter and check for rotation or foreign material</td>
</tr>
<tr>
<td></td>
<td>c. Meter wire not installed securely into three pin connector</td>
<td>c. Verify meter cable wires are installed securely into three pin connector labeled METER</td>
</tr>
<tr>
<td></td>
<td>d. Defective meter</td>
<td>d. Replace meter</td>
</tr>
<tr>
<td></td>
<td>e. Defective PC Board</td>
<td>e. Replace PC Board</td>
</tr>
<tr>
<td>4. Control valve regenerates at wrong time of day</td>
<td>a. Power outage</td>
<td>a. Reset time of day. If PC Board has battery back up present the battery may be depleted. See Front Cover and Drive Assembly drawing for instructions.</td>
</tr>
<tr>
<td></td>
<td>b. Time of day not set correctly</td>
<td>b. Reset to correct time of day</td>
</tr>
<tr>
<td></td>
<td>c. Time of regeneration set incorrectly</td>
<td>c. Reset regeneration time</td>
</tr>
<tr>
<td></td>
<td>d. Control valve set at “on 0” (immediate regeneration)</td>
<td>d. Check programming setting and reset to NORMAL (for a delayed regen time)</td>
</tr>
<tr>
<td></td>
<td>e. Control valve set at “NORMAL + on 0” (delayed and/or immediate)</td>
<td>e. Check programming setting and reset to NORMAL (for a delayed regen time)</td>
</tr>
<tr>
<td>5. Time of day flashes on and off</td>
<td>a. Power outage</td>
<td>a. Reset time of day. If PC Board has battery back up present the battery may be depleted. See Front Cover and Drive Assembly drawing for instructions.</td>
</tr>
<tr>
<td>6. Control valve does not regenerate automatically when the REGEN button is depressed and held.</td>
<td>a. Broken drive gear or drive cap assembly</td>
<td>a. Replace drive gear or drive cap assembly</td>
</tr>
<tr>
<td></td>
<td>b. Broken Piston Rod</td>
<td>b. Replace piston rod</td>
</tr>
<tr>
<td></td>
<td>c. Defective PC Board</td>
<td>c. Replace PC Board</td>
</tr>
<tr>
<td>7. Control valve does not regenerate automatically but does when the REGEN button is depressed and held.</td>
<td>a. Meter is not connected to meter connection on PC Board</td>
<td>a. Connect meter to three pin connection labeled METER on PC Board</td>
</tr>
<tr>
<td></td>
<td>b. Restricted/ stalled meter turbine</td>
<td>b. Remove meter and check for rotation or foreign material</td>
</tr>
<tr>
<td></td>
<td>c. Incorrect programming</td>
<td>c. Check for programming error</td>
</tr>
<tr>
<td></td>
<td>d. Meter wire not installed securely into three pin connector</td>
<td>d. Verify meter cable wires are installed securely into three pin connector labeled METER</td>
</tr>
<tr>
<td></td>
<td>e. Defective meter</td>
<td>e. Replace meter</td>
</tr>
<tr>
<td></td>
<td>f. Defective PC Board</td>
<td>f. Replace PC Board</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>8. Hard or untreated water is being delivered</td>
<td>a. Media is exhausted due to high water usage</td>
<td>a. Check program settings or diagnostics for abnormal water usage</td>
</tr>
<tr>
<td></td>
<td>b. Meter not registering</td>
<td>b. Remove meter and check for rotation or foreign material</td>
</tr>
<tr>
<td></td>
<td>c. Water quality fluctuation</td>
<td>c. Test water and adjust program values accordingly</td>
</tr>
<tr>
<td></td>
<td>d. No regenerant or low level of regenerant in regenerant tank</td>
<td>d. Add proper regenerant to tank</td>
</tr>
<tr>
<td></td>
<td>e. Control fails to draw in regenerant</td>
<td>e. Refer to Trouble Shooting Guide number 12</td>
</tr>
<tr>
<td></td>
<td>f. Insufficient regenerant level in regenerant tank</td>
<td>f. Check refill setting in programming. Check refill flow control for restrictions or debris and clean or replace</td>
</tr>
<tr>
<td></td>
<td>g. Damaged seal/stack assembly</td>
<td>g. Replace seal/stack assembly</td>
</tr>
<tr>
<td></td>
<td>h. Control valve body type and piston type mixed</td>
<td>h. Verify proper control valve body type and piston type match</td>
</tr>
<tr>
<td></td>
<td>i. Fouled media bed</td>
<td>i. Replace media bed</td>
</tr>
<tr>
<td>9. Control valve uses too much regenerant</td>
<td>a. Improper refill setting</td>
<td>a. Check refill setting</td>
</tr>
<tr>
<td></td>
<td>b. Improper program settings</td>
<td>b. Check program setting to make sure they are specific to the water quality and application needs</td>
</tr>
<tr>
<td></td>
<td>c. Control valve regenerates frequently</td>
<td>c. Check for leaking fixtures that may be exhausting capacity or system is undersized</td>
</tr>
<tr>
<td>10. Residual regenerant being delivered to service</td>
<td>a. Low water pressure</td>
<td>a. Check incoming water pressure – water pressure must remain at minimum of 25 psi</td>
</tr>
<tr>
<td></td>
<td>b. Incorrect injector size</td>
<td>b. Replace injector with correct size for the application</td>
</tr>
<tr>
<td></td>
<td>c. Restricted drain line</td>
<td>c. Check drain line for restrictions or debris and clean</td>
</tr>
<tr>
<td>11. Excessive water in regenerant tank</td>
<td>a. Improper program settings</td>
<td>a. Check refill setting</td>
</tr>
<tr>
<td></td>
<td>b. Plugged injector</td>
<td>b. Remove injector and clean or replace</td>
</tr>
<tr>
<td></td>
<td>c. Drive cap assembly not tightened in properly</td>
<td>c. Re-tighten the drive cap assembly</td>
</tr>
<tr>
<td></td>
<td>d. Damaged seal/stack assembly</td>
<td>d. Replace seal/stack assembly</td>
</tr>
<tr>
<td></td>
<td>e. Restricted or kinked drain line</td>
<td>e. Check drain line for restrictions or debris and or straighten drain line</td>
</tr>
<tr>
<td></td>
<td>f. Plugged backwash flow controller</td>
<td>f. Remove backwash flow controller and clean or replace</td>
</tr>
<tr>
<td></td>
<td>g. Missing refill flow controller</td>
<td>g. Replace refill flow controller</td>
</tr>
<tr>
<td>12. Control valve fails to draw in regenerant</td>
<td>a. Injector is plugged</td>
<td>a. Remove injector and clean or replace</td>
</tr>
<tr>
<td></td>
<td>b. Faulty regenerant piston</td>
<td>b. Replace regenerant piston</td>
</tr>
<tr>
<td></td>
<td>c. Regenerant line connection leak</td>
<td>c. Inspect regenerant line for air leak</td>
</tr>
<tr>
<td></td>
<td>d. Drain line restriction or debris cause excess back pressure</td>
<td>d. Inspect drain line and clean to correct restriction</td>
</tr>
<tr>
<td></td>
<td>e. Drain line too long or too high</td>
<td>e. Shorten length and or height</td>
</tr>
<tr>
<td></td>
<td>f. Low water pressure</td>
<td>f. Check incoming water pressure – water pressure must remain at minimum of 25 psi</td>
</tr>
<tr>
<td>13. Water running to drain</td>
<td>a. Power outage during regeneration</td>
<td>a. Upon power being restored control will finish the remaining regeneration time. Reset time of day.</td>
</tr>
<tr>
<td></td>
<td>b. Damaged seal/stack assembly</td>
<td>b. Replace seal/stack assembly</td>
</tr>
<tr>
<td></td>
<td>c. Piston assembly failure</td>
<td>c. Replace piston assembly</td>
</tr>
<tr>
<td></td>
<td>d. Drive cap assembly not tightened in properly</td>
<td>d. Re-tighten the drive cap assembly</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>14. E1, Err – 1001, Err – 101 = Control unable to sense motor movement</td>
<td>a. Motor not inserted full to engage pinion, motor wires broken or disconnected</td>
<td>a. Disconnect power, make sure motor is fully engaged, check for broken wires, make sure two pin connector on motor is connected to the two pin connection on the PC Board labeled MOTOR. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td></td>
<td>b. PC Board not properly snapped into drive bracket</td>
<td>b. Properly snap PC Board into drive bracket and then Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td></td>
<td>c. Missing reduction gears</td>
<td>c. Replace missing gears</td>
</tr>
</tbody>
</table>

15. E2, Err – 1002, Err – 102 = Control valve motor ran too short and was unable to find the next cycle position and stalled	a. Foreign material is lodged in control valve	a. Open up control valve and pull out piston assembly and seal/stack assembly for inspection. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.
	b. Mechanical binding	b. Check piston and seal/stack assembly, check reduction gears, check drive bracket and main drive gear interface. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.
	c. Main drive gear too tight	c. Loosen main drive gear. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.
	d. Improper voltage being delivered to PC Board	d. Verify that proper voltage is being supplied. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.

<p>| 16. E3, Err – 1003, Err – 103 = Control valve motor ran too long and was unable to find the next cycle position | a. Motor failure during a regeneration | a. Check motor connections then Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect. |
| | b. Foreign matter built up on piston and stack assemblies creating friction and drag enough to time out motor | b. Replace piston and stack assemblies. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect. |
| | c. Drive bracket not snapped in properly and out enough that reduction gears and drive gear do not interface | c. Snap drive bracket in properly then Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect. |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Err – 1004, Err – 104 = Control valve motor ran too long and timed out trying to reach home position</td>
<td>a. Drive bracket not snapped in properly and out enough that reduction gears and drive gear do not interface</td>
<td>a. Snap drive bracket in properly then Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td>18. Err -1006, Err – 106, Err - 116 = MA V/ SEPS/ NHBP/ AUX MA V valve motor ran too long and unable to find the proper park position</td>
<td>a. Control valve programmed for ALT A or b, nHbp, SEPS, or AUX MA V with out having a MAV or NHBP valve attached to operate that function</td>
<td>a. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect. Then re-program valve to proper setting</td>
</tr>
<tr>
<td></td>
<td>b. MAV/ NHBP motor wire not connected to PC Board</td>
<td>b. Connect MAV/ NHBP motor to PC Board two pin connection labeled DRIVE. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td></td>
<td>c. MAV/ NHBP motor not fully engaged with reduction gears</td>
<td>c. Properly insert motor into casing, do not force into casing Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td></td>
<td>d. Foreign matter built up on piston and stack assemblies creating friction and drag enough to time out motor</td>
<td>d. Replace piston and stack assemblies. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td>19. Err – 1007, Err – 107, Err - 117 = MA V/ SEPS/ NHBP/ AUX MA V valve motor ran too short (stalled) while looking for proper park position</td>
<td>a. Foreign material is lodged in MAV/ NHBP valve</td>
<td>a. Open up MAV/ NHBP valve and check piston and seal/ stack assembly for foreign material. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
<tr>
<td></td>
<td>b. Mechanical binding</td>
<td>b. Check piston and seal/ stack assembly, check reduction gears, drive gear interface, and check MAV/ NHBP black drive pinion on motor for being jammed into motor body. Press NEXT and REGEN buttons for 3 seconds to resynchronize software with piston position or disconnect power supply from PC Board for 5 seconds and then reconnect.</td>
</tr>
</tbody>
</table>
With the nut removed, a slot at the top of the water meter is visible. Twist a flat blade screwdriver in the slot between the control valve body and the meter. When the meter is part way out it is easy to remove the water meter from the housing. Once the water meter is removed from the control valve body, gently pull forward on the turbine to remove it from the shaft.

<table>
<thead>
<tr>
<th>3/8/2013</th>
<th>PAGE 20:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service flow rate 1"</td>
<td>28 gpm (106 lpm, 6.36 m³/h) @15 psig (103 kPa) drop</td>
</tr>
<tr>
<td>Backwash flow rate 1"</td>
<td>15 gpm (57 lpm, 3.4 m³/h) @25 psig (172 kPa) drop</td>
</tr>
</tbody>
</table>

5/28/2013
PAGE 17:
Added V4052-01 TT Interconnect Kits 12\" to 21\" Tanks

8/7/2013
FRONT COVER:
Added drawing

8/15/2013
FRONT COVER:
Added call outs to drawing and installation text

PAGE 2:
Installation information

8/23/2013
FRONT COVER:
Added call outs to drawing and installation text

PAGE 2:
, rather than to the 2nd tank connection ports.

6/17/2014
PAGE 20:
Allow one foot of clearance to service the valve.

The valve will withstand transportation and storage temperatures of -13 °F (-25 °C) to 131 °F (55 °C) and for short periods up to 158 °F (70 °C). If valve has been exposed to freezing conditions let valve warm up to room temperature before running water through it. The valve has been packaged to prevent damage from the effects of normal humidity, vibration and shock.

PAGE 24:
Slip Hazard Symbol and text
Disconnect electrical power symbol and text
CLACK CORPORATION
FIVE-YEAR SOFTENER AND FILTER CONTROLS
LIMITED WARRANTY

Clack Corporation ("Clack") warrants to OEM that its Softener and Filter Control Valves will be free from defects in material and workmanship under normal use and service for a period of five years from the date of shipment of such Valves from Clack’s plant in Windsor, Wisconsin when installed and operated within recommended parameters. No warranty is made with respect to defects not reported to Clack within the warranty period and/or defects or damages due to neglect, misuse, alterations, accident, misapplication, physical damage, or damage caused by fire, acts of God, freezing or hot water or similar causes. For outdoor installations where the Softener and Filter Control Valves are not under cover, the weather cover must be utilized for the warranty to be valid.

Clack’s obligation to OEM under this Limited Warranty shall be limited, at its option, to replacement or repair of any Softener and Filter Control valve covered by this Limited Warranty. Prior to returning a Control Valve, OEM must obtain a return goods authorization number from Clack and return the Control Valve freight prepaid. If any Control Valve is covered under this Limited Warranty, Clack shall return the Control Valve repaired, or its replacement, prepaid to the original point of shipment.

CLACK GIVES THIS WARRANTY TO OEM IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND HEREBY EXPRESSLY DISCLAIMS ALL OTHER SUCH WARRANTIES. CLACK’S LIABILITY HEREUNDER SHALL NOT EXCEED THE COST OF THE PRODUCT. UNDER NO CIRCUMSTANCES WILL CLACK BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES OR FOR ANY OTHER LOSS, DAMAGE OR EXPENSE OF ANY KIND, INCLUDING LOSS OF PROFITS, ARISING IN CONNECTION WITH THE INSTALLATION OR USE OR INABILITY TO USE THE CONTROL VALVES OR ANY WATER TREATMENT SYSTEM THE CONTROL VALVE IS INCORPORATED INTO.